# Design Talk

Team: sddec23-08

#### **Problem Statement**

Ideal:

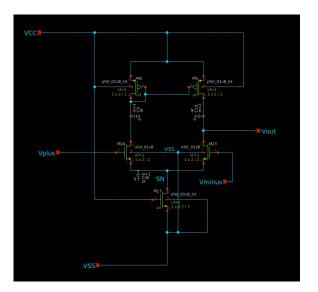
- Iowa State University would have access to fabricated ReRAM chips for research purposes
- Iowa State University would have institutional knowledge of how the analog design flow works for the Skywater 130nm process

#### **Reality:**

- It is difficult to get any fabricated chip, especially one with ReRAM, because of how new of a technology it is.
- Iowa State University has never produced a fabricated analog chip on the Skywater 130nm processed

#### Proposal:

- Use eFabless's MPW shuttle program to submit a ReRAM chip proposal.
  - If it gets approved, it would give us access to fabricated ReRAM chips
  - Along the way, we would document our workflow, contributing the ISU's internal knowledge of analog fabrication in the Skywater 130nm process.


# **Design Context**

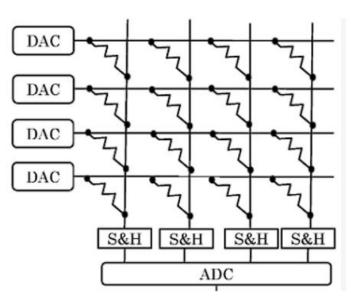
- Client
  - Needs a ReRam crossbar for Testing and Research purposes
  - Wants Documentation on the Skywater 130nm process
- Students interested in ASIC chip design
  - Wants to learn more about bringing an integrated circuit through a design process to silicon
- Global, Cultural, Social and Economic
  - Open Source
- Environmental
  - ReRam is more power efficient than its digital counterparts

## Design Context Continued...

Technical Complexity:

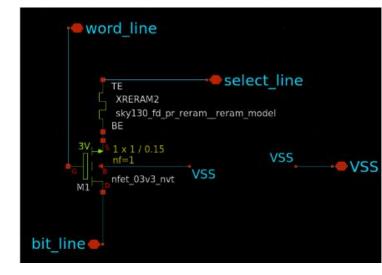
- ReRam cell
- Data Converters
- Op-Amps
- ASIC design
- Skywater 130nm Process flow




# **Design Exploration**

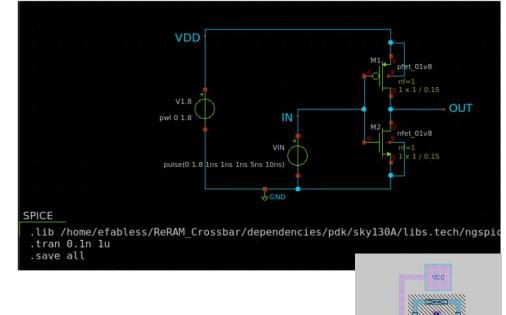
- Key Decisions
  - Architecture of DAC
  - Architecture of ADC
  - How to write weights to 1t1R cells.
- Ideation of ADC architectures:
  - Successive Approximation AD(
  - Dual-Slope ADC
  - Pipeline ADC
  - Flash ADC
  - Delta-Sigma ADC

|   | ADC Architecture | Pros                                                                              | Cons                                                                                  |
|---|------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|   | SAR              | Handles waveshapes very well,<br>takes very high sample rate,<br>high resolutions | Can be slow, larger/more<br>complex design at low<br>resolutions                      |
|   | Dual-Slope       | Very accurate, and has<br>high-resolution                                         | Slow sample rate and speed,<br>can be hard to implement                               |
| ( | Pipelined        | Very fast speeds, good<br>resolution                                              | Inherent latency due to<br>architecture                                               |
|   | Flash            | The fastest speed, no latency,<br>easy to implement at "1-bit"<br>level           | Circuit gets much bigger with<br>resolution increases, limited<br>to 8-bit resolution |
|   | Delta-Sigma      | Very high resolution, reduces quantization noise                                  | Limited sample rate, does not<br>handle unnatural waves                               |


# **Proposed Design**

- Timeline
  - User inputs digital value into circuit
  - Digital value gets turned into analog value through DAC
  - ReRAM crossbar does computation
  - Current accumulates on columns
  - Currents goes through transimpedance amplifier
  - Sample & Hold + ADC convert analog voltage back to digital value
  - Digital value is output to Caravel harness to be read by user




## Proposed Design Continued...

- Each ReRAM cell is comprised of 1 ReRAM and 1 transistor (1t1R cell)
- Weights are written to gate of transistor (word\_line)
  - This dictates if resistance is high or low for computation
- Select\_line is the "rows"
  - This will be where output of DAC goes
- Bit\_line is the "column"
  - Output of the cell where current accumulates



## **Design Analysis**

- Currently in progress...
  - We have created DAC, ADC and 1t1R cell
  - Still need to create sample & hold circuit, and transimpedance amplifier
- For first test we are only running computation through one cell to ensure components work together as intended



OUT